

Available online at www.sciencedirect.com

Journal of Molecular Catalysis A: Chemical 225 (2005) 217-223

www.elsevier.com/locate/molcata

Adsorption and reactions of butyl species over Mo₂C catalyst

Frigyes Solymosi^{a,b,*}, Tamás Bánsági^b, Timea Süli Zakar^a

^a Institute of Solid State and Radiochemistry, University of Szeged, P.O. Box 168, Dom sqr 7, H-6701 Szeged, Hungary ^b Reaction Kinetics Research Group, Hungarian Academy of Sciences, P.O. Box 168, Dom sqr 7, H-6701 Szeged, Hungary

> Received 4 June 2004; accepted 1 August 2004 Available online 13 October 2004

Abstract

The adsorption and reactions of butyl iodide on $Mo_2C/ZSM-5$ and Mo_2C/SiO_2 have been investigated by means of FTIR spectroscopy and mass spectrometry. Adsorption bands were observed following the adsorption of butyl iodide at 200–230 K that corresponds well to the vibrations of molecularly adsorbed C_4H_9I . At higher adsorption temperatures, bands due to the adsorbed butene and butylidyne also appeared. From the comparison of the adsorption and desorption characteristics determined on pure and Mo_2C -containing ZSM-5, it was concluded that the majority of butyl iodide is attached to ZSM-5. The presence of Mo_2C on ZSM-5 and SiO_2 , however, enhanced the rate of the decomposition, promoted the coupling of butyl species and catalyzed the formation of xylene and benzene. It was assumed that Mo_2C interacting with the acidic sites of the support is the active center for the latter processes. © 2004 Elsevier B.V. All rights reserved.

Keywords: Adsorption; Benzene; Butane

1. Introduction

In an effort to convert methane into more valuable compounds, extensive research has been performed in the last decades to develop an effective catalyst for its processes [1–3]. The finding that Mo₂C on ZSM-5 is capable of converting methane into benzene with 80% selectivity at 10-15% conversion is meant a significant achievement in this area [4-11]. Mo₂C/ZSM-5 also catalyzed the aromatization of ethane and propane [12–14]. Recently it was found that while *n*-butane undergoes dehydrogenation and cracking on pure ZSM-5 with the formation of a small amount of benzene, the deposition of Mo₂C markedly enhanced the yield and the selectivity of aromatics [15–18]. This observation suggested that Mo₂C opened a new route for the activation of butane, namely the generation of butyl species from the adsorbed butane molecule, which is effectively transformed into compounds leading to aromatics.

In order to establish the role of Mo₂C in the activation and reactions of alkanes, hydrocarbon fragments (CH₃, CH₂, C₂H₅, C₃H₅, etc.) were prepared on Mo₂C/Mo(100) by the adsorption and dissociation of the corresponding iodo compounds [19-23]. As appeared from previous studies on metal single crystal surfaces, alkyl iodides dissociate on metals at 100-300 K resulting in alkyl species, which, depending on the nature of the metals, undergo various reactions [24-27]. While this approach provided valuable informations on the bonding and reaction pathways of $C_r H_v$ fragments on Mo₂C/Mo(100) surface under UHV conditions, a caution is needed to use the results in establishing the mechanism of the catalytic reactions occurring under different experimental conditions, namely on highly dispersed catalysts and at the atmospheric pressure. Another difference is that in the real catalyst, Mo₂C is deposited on ZSM-5, which also promotes some steps leading to aromatic compounds. To overcome this drawback, the adsorptions and reactions of butyl species formed in the dissociation of butyl iodide is examined on real catalysts, Mo₂C/ZSM-5, Mo₂C/SiO₂ and ZSM-5, under almost the same conditions as applied in the catalytic studies.

^{*} Corresponding author. Fax: +36 62 420 678.

E-mail address: fsolym@chem.u-szeged.hu (F. Solymosi).

^{1381-1169/\$ –} see front matter @ 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.molcata.2004.08.044

2. Experimental

Two ZSM-5 samples were used with SiO₂/Al₂O₃ ratio of 80 and 280. The starting material was NH₄-ZSM-5 (Zeolite International), which was calcined to produce H-ZSM-5 in air at 863 K for 5h. Silica was the product of Aerosil. Butyl iodide (Fluka) was cleaned by several freezepump-thaw cycles. MoO₃-containing catalysts were prepared by impregnating H-ZSM-5 or SiO₂ with a basic solution of ammonium heptamolybdate to yield different wt% of MoO₃. The suspension was dried at 373 K and calcined at 863 K for 5 h. Supported Mo₂C catalysts were produced by the carburization of calcined MoO₃/ZSM-5 or MoO₃/SiO₂ by ethane following the description of Green et al. [28]: the MoO₃-containing sample was heated under 10% (v/v) C_2H_6/H_2 , from room temperature to 900 K at a heating rate of 0.8 K/min. After preparation, the catalysts were cooled down to room temperature under argon. The carbides were passivated in flowing 1% O2/Ar at 300 K. Before most of the catalytic experiments, the samples were treated with H₂ at 873 K for 60 min to remove the excess carbon. Unsupported Mo₂C was also prepared by carburization of MoO₃ with ethane.

The catalysts have been characterized by XPS measurements. The binding energies for Mo($3d_{5/2}$) and Mo($3d_{3/2}$) were 227.8–228.2 and 230.7–231.1 eV, respectively, and for C(1s) 283.8 eV. These values are consistent with those attributed to Mo₂C [8,11,29]. Infrared transmission spectra were recorded with a FTIR spectrometer (Bio-Rad, 155) with a wavenumber accuracy of $\pm 4 \text{ cm}^{-1}$. Typically 16 scans were recorded. All the spectra presented are different. Subtractions of the spectra were taken without use of a scaling factor (f=1.0000). The reaction of butyl iodide was followed in a closed circulation system; the amount of catalyst was 0.2 g. The products were analyzed by a quadruple mass spectrometer.

3. Results

3.1. Infrared studies

First, the adsorption of butyl iodide was investigated by means of FTIR spectroscopy. Fig. 1A shows the IR spectra of Mo_2C/SiO_2 sample following the adsorption of C_4H_9I (1.0 Torr) at 200–230 K, and after subsequent evacuation, major bands appeared at 2966, 2937, 2879, 2841, 1466, 1430, 1383, 1370 and 1356 cm⁻¹. Heating the adsorbed layer to higher temperature, the bands gradually attenuated, but it did not lead to any spectral changes. The bands completely disappeared above 300 K.

In the next experiments, the Mo_2C/SiO_2 sample was heated in the presence of C₄H₉I (1.0 Torr) at different temperatures, and after 20 min the cell was evacuated for 10 min at the temperature of the adsorption. Spectra obtained are displayed in Fig. 1B. New bands, not observed previously,

Fig. 1. (A) FTIR spectra of 1.4% Mo₂C/SiO₂ following the adsorption of butyl iodide (1.0 Torr) at 200 K and subsequent evacuation at different temperatures. (B) FTIR spectra of 1.4% Mo₂C/SiO₂ following the adsorption of butyl iodide (1 Torr) at different temperatures. The samples were degassed at the temperature of the adsorption before registering the spectra.

appeared at 2921, 2912, 2902, 2873, 1459 and 1419 cm^{-1} at 300–373 K. Raising the adsorption temperature led to an intensification of these bands up to 473 K, and then to their attenuation. Similar measurements were carried out with the SiO₂ support alone. We detected the characteristic absorption bands of adsorbed C₄H₉I, which disappeared after evacuation at 373 K.

Adsorption of 1.0 Torr of C_4H_9I on Mo_2C/ZSM -5(80) at 200–230 K gave similar spectral features as observed for Mo_2C/SiO_2 samples with only small alterations (Fig. 2A). Spectra obtained after heating the Mo_2C/ZSM -5(80) with C_4H_9I (1 Torr) at 263 K caused a slight shift in the position of the bands registered at lower temperature and produced only new weak bands at 2909, 2905 and 2864 cm⁻¹. Adsorption at higher temperature led to attenuation of all spectral features (Fig. 2B).

Fig. 2. (A) FTIR spectra of 1.4% Mo₂C/ZSM-5(80) following the adsorption of butyl iodide (1.0 Torr) at 200 K and subsequent evacuation at different temperatures. (B) FTIR spectra of 1.4% Mo₂C/ZSM-5(80) following the adsorption of butyl iodide (1 Torr) at different temperatures. The samples were degassed at the temperature of the adsorption before registering the spectra.

In order to facilitate the assignments of the above bands, the IR spectra of the adsorbed 1-butene have been also registered under the same experimental conditions. At low temperature, 173–206 K, intense absorption bands appeared at 2972, 2966, 2941, 2918, 2902, 2879, 2848, 1465, 1443, 1417 and 1380 cm⁻¹, the intensity of which decreased with the rise in evacuation temperature (Fig. 3). No development of new bands were experienced between 200–250 K. Adsorbing 1-butene at higher temperatures, 300–373 K, produced weak bands at 2933, 2926, 2865 and 2857 cm⁻¹ (Fig. 3).

3.2. Thermal desorption measurements

In the following experiments, we determined the product desorbed after C_4H_9I adsorption on various catalysts. Ad-

Fig. 3. FTIR spectra of 1.4% Mo₂C/SiO₂ following the adsorption of 1butene (1.0 Torr) at different temperatures. Spectra of (a) and (b) were obtained after evacuation at 173 and 206 K, respectively.

mitting 10 Torr of C₄H₉I onto Mo₂C/ZSM-5 at 300 K the mass spectrum of the C₄H₉I showed only a slight change compared to that observed in the absence of the catalyst. After degassing the reactor for 10 min, the catalyst has been heated up with approx. 35 K/min. As shown in Fig. 4, the desorption of butyl iodide (57 amu) started at ~360 K with $T_p \approx 412$ K followed by butene (43 amu) $T_p = 416$ K, and bu-

Fig. 4. Desorption products formed following the heating of 1.4% Mo₂C/ZSM-5(80) after adsorption of butyl iodide (10 Torr) at 300 K. (a) butyl iodide; (b) butene; (c) butane; (d) xylene.

tane (58 amu) $T_p = 441$ K. In addition, the release of xylene (91 amu) $T_p = 603$ K also occurred. Taking into account the calibration of our MS to various products we came to the conclusion that the intensities of butene, butane and xylene are 15, 10 and ~100 times, respectively, higher than those calculated from the fragmentation of butyl iodide. Very similar TPD curves were obtained for pure ZSM-5(80), but the amount of desorbed butane and butene was somewhat lower.

3.3. Decomposition of C₄H₉I

The decomposition of C₄H₉I (10 Torr) was next, followed by stepwise increase of the temperature. On ZSM-5(80) a decrease in the pressure of C_4H_9I started at 373 K together with the formation of hydrogen, butene and propane (44 amu). At 473 K the evolution of xylene, and at 573 K that of benzene was observed. This was accompanied with the decay of the butene. Above 373 K, the formation of octanes (71 amu) was also detected. The other products were methane and ethane. The rise of the temperature was clearly favorable for the formation of xylene and benzene. The deposition of 2% Mo₂C on ZSM-5(80) enhanced the rate of the reaction of butyl iodide, and particularly that of the H₂ production. Its favorable effect was clearly exhibited in the formation of xylene and benzene, which occurred at lower temperature and to a greater extent. In addition, Mo₂C also promoted the production of octane, octene and octadiene.

A particular attention was paid to the catalytic effect of Mo_2C/SiO_2 samples, as silica, in contrast to ZSM-5, is practically inactive in the aromatization of *n*-butane [18]. Pure silica exerted no or only a very slight influence on the decomposition of C₄H₉I. On Mo₂C/SiO₂ catalyst, however, we registered a well-measurable reaction from 423 K and besides butene and butane, the formation of xylene, benzene and octane was also observed at higher temperatures. They were

produced, however, in much less concentrations compared to ZSM-5-based catalysts. Relevant data for the comparison of the effects of different catalysts on the production of aromatics and octane are presented in Fig. 5.

Some experiments have been performed under isotherm conditions at 773 K. At this temperature the decomposition of butyl iodide is relatively fast, even the homogeneous reaction is well-measurable, but aromatics are not formed in the absence of catalysts. The promoting effect of Mo_2C is well-exhibited in this case, too. As regards the catalytic efficiency, the ZSM-5(80) samples were always superior to ZSM-5(280)-based catalysts. Aromatics and C₈ compounds were produced on Mo_2C/SiO_2 too, but the amount was almost one order of magnitude less compared to that measured on ZSM-5 type catalysts. Some data are shown in Fig. 6.

4. Discussion

4.1. Infrared spectroscopic measurements

The absorption bands observed following the adsorption of butyl iodide on Mo₂C-containing catalysts at 200–230 K correspond very well to the different vibrations of adsorbed C₄H₉I (Table 1). On heating the adsorbed layer under continuous evacuation up to 275–293 K caused a gradual attenuation of the absorption bands without any shift in their position and the development of new absorption features. This behaviour may suggest that no dissociation or reactions occurred on the catalyst. This conclusion is probably not right as recent XPS measurements on Mo₂C/Mo(100) surface that disclosed the dissociation of C₄H₉I at 200–300 K, which was not accompanied with any detectable spectral changes in the HREEL spectra [33]. The failure of the detection of the dissociation by HREELS was attributed to the low resolution of

Fig. 5. Formation of xylene (A), benzene (B) and octane (C) in the reaction of butyl iodide (10 Torr) on (a) 1.4% Mo₂C/ZSM-5(80), (b) ZSM-5(80) and (c) 1.4% Mo₂C/SiO₂ during the gradual increase of the temperature.

Fig. 6. Formation of xylene (A) and benzene (B) on (a) 1.4% Mo₂C/ZSM-5(80), (b) ZSM-5(80), (c) 1.4% Mo₂C/ZSM-5(280), (d) ZSM-5(280), (e) 15% Mo₂C/SiO₂ and (f) 1.4% Mo₂C/SiO₂ in the reaction of butyl iodide (10 Torr) at 773 K.

Table 1 Characteristic absorption bands and vibration losses of various C_4 compounds

Approximate mode description	Ar-matrix/ C ₄ H ₉ I IR, 20 K [30]	SiO ₂ /C ₄ H ₉ I IR, 200 K (this work)	Mo ₂ C/SiO ₂ / C ₄ H ₉ I IR, 200–233 K (this work)	Pt/SiO ₂ /1-butene IR, 300 K [31]	(4 × 4)-C/Mo(1 1 0)/ isobutene HREELS, 150 K [32]	Pt(1 1 1) trans-butylidyne RAIRS, 270 K [31]	(4 × 4)-C/Mo(1 1 0)/ butylidyne HREELS, 300 K [32]
CH ₃ and CH ₂ asym.	2972 (vs)	2964	2965	2960	2943		
stretches							
CH ₂ sym. stretch	2943 (vs)	2937	2937, 2911	2932, 2920			
CH ₂ sym. stretch	2884 (s)	2879	2879	2890			
CH ₂ sym. stretch	2872 (s)	2868	2871	2875	2874	2934	2936
CH ₃ sym. stretch	2847 (s)	2840	2841			2874	2875
CH ₃ asym. deformation	1469 (s)	1466	1466	1480			
CH ₃ asym. deformation		1461	1461				
CH ₂ deformation	1445 (w)			1450			1441
CH ₂ deformation	1435 (w)	1430	1430		1434		
CH ₂ deformation	1430 (s)			1408			
CH ₃ sym. deformation		1382	1383, 1369,	1380, 1352	1353	1377	1366
•			1355				
CH ₂ twist	1288 (s)					1331	
CH ₂ twist	1260 (m)						1238
CH ₂ wag	1250 (vs)		1200	1330		1110	1035
CC stretch	1014 (w)		1033		1035		
CC stretch	992 (w)						852
CC stretch	966 (w)				960		

the spectrometer, which does not make it possible to distinguish between them. The fact that we could not find any spectral differences of the annealed layer at 220–300 K even by sensitive FTIR spectroscopy indicates that the vibration characteristics of the adsorbed C_4H_9I and C_4H_9 are very similar, e.g., undistinguishable. This is in contrast to the other alkyl iodides with lower C number, where this distinction can be easily achieved [19–23].

A well-observable spectral changes occurred, however, when the Mo₂C catalyst was kept in the presence of C₄H₉I at 275–300 K for 20–30 min. New bands appeared at 2902 and 2912 cm⁻¹, which can be likely attributed to the vibrations of adsorbed butene species (Figs. 1 and 2). The bands at 2921 and 2864–2870 cm⁻¹ developed at 373 K are probably due to adsorbed butylidine. These features were also observed when 1-butene interacted with Mo₂C catalyst.

4.2. Reactions of butyl iodide

Studies performed under UHV conditions on Mo₂C prepared on Mo(100) single crystal surfaces revealed that the weakly adsorbed C₄H₉I ($T_a \approx 100$ K) desorbs in two peaks, $T_{\rm p} = 160$ and 280 K [33]. The more strongly adsorbed fraction dissociates at 140-300 K, and the butyl species formed undergoes dehydrogenation and hydrogenation to give butene $(T_a = 246 \text{ and } 322 \text{ K})$ and butane $(T_p = 246-290 \text{ K})$. Higher hydrocarbons or aromatic compounds, benzene, toluene and xylene, were not identified in the desorbing gases. The product of the coupling of butyl species, C8 compound was detected only in the trace amounts. When the adsorption temperature was higher ($T_a = 300 \text{ K}$), the gaseous products formed were the same, but the desorption of butyl iodide was not observed. A very stable $C_x H_y$ fragments also formed in the reaction of C₄H₉ on the surface, however, as indicated by HREEL spectra and the release of hydrogen above 550-600 K.

The situation in the present case using supported Mo₂C and working of higher pressures is different from many respects. TPD measurements revealed the presence of adsorbed C₄H₉I which desorbs in a peak, $T_p = 412$ K. In the light of the results obtained for Mo₂C/Mo(100) we cannot expect the existence of undissociated C₄H₉I on the Mo₂C surface at and above 300 K. It is more likely that most part of this butyl iodide is bonded to the ZSM-5, as we obtained the same peak for C₄H₉I desorption using pure ZSM-5 surface. This conclusion is supported by the results for Mo₂C/SiO₂ when the amount of desorbed C₄H₉I was significantly less. Note that on pure silica practically no C₄H₉I remained adsorbed after evacuation at 300 K. This is in harmony with the FTIR measurements.

The release of butene and butane above 400 K in TPD measurements suggests the occurrence of the dissociation of adsorbed C₄H₉I, e.g., the formation butyl species

 $C_4H_9 - I_{(a)} = C_4H_9 + I_{(a)}$

a fraction of which may undergo disproportionation

$$2C_4H_{9(a)} = C_4H_{8(g)} + C_4H_{10(g)}$$

to yield butene and butane. In addition, we may count with the dehydrogenation step

$$C_4H_{9(a)} = C_4H_{8(a)} + H_{(a)}$$

and also with the decomposition of C_4H_9 to C_xH_y and H_2 . Octane, the product of the coupling of C_4H_9

$$2C_4H_{9(a)} = C_8H_{18(a)}$$

was detected only in a trace amount. In contrast, the formation of xylene was well-measurable even by TPD experiment (Fig. 4).

The promoting effect of Mo₂C on the above processes came into fore when gaseous C₄H₉I was contacted with Mo₂C-containing catalyst (Figs. 5 and 6). This was primarily exhibited in the enhanced formation of aromatics, xylene and benzene. This implies that Mo_2C , besides facilitating the cleavage of C-I bond, promotes the coupling of hydrocarbon fragments and the reactions leading to aromatics. As concerns the production of xylene and benzene, the results presented in Fig. 6 show that the ZSM-5-based catalysts with low Si/Al ratio is more active compared to the zeolite with high silica content. The total acidic sites/unit cell determined by NH₃ adsorption is 9.79 for ZSM-5(80), and only 1.32 for ZSM-5(280). This strongly supports the idea that the acidic sites play an important role in the aromatization of lower hydrocarbons. We may also conclude that these processes proceed more easily at the Mo₂C/ZSM-5 interface, e.g., on the Mo₂C particles interacting with Brönsted centers of ZSM-5.

When Mo₂C was deposited on silica, most of the reaction products were identified, but their formation occurred to a limited extent even using higher loading of Mo₂C (Figs. 5 and 6). This is particularly true for the xylene and benzene. In the study of the reaction of *n*-butane, we found that the aromatization processes occur to less extent even over Mo₂C/SiO₂ [18]. As silica does not contain Brönsted centers, and this acidic site is not generated during the carburization of MoO₃ [34], we may infer that the aromatization processes are facilitated by the Mo₂C particles interacting with the Lewis sites of the silica.

5. Conclusions

- (i) In harmony with the HREELS measurements performed on Mo₂C/Mo(100) [33], there was no spectral indication of the formation of butyl species in the dissociation of butyl iodide on Mo₂C-containing catalysts.
- (ii) Butyl iodide adsorbed on ZSM-5 at 300 K desorbs with $T_p = 412$ K. Another fraction disproportionate through the possible formation butyl species into butene and butane.

- (iii) Mo_2C deposited on ZSM-5 promotes the decomposition of butyl iodide, and the formation of xylene, benzene and different C_8 compounds.
- (iv) The catalytic effect of Mo_2C towards the coupling of butyl groups and formation of aromatics was wellexhibited on inactive SiO₂ support.

Acknowledgements

The work was supported by the Hungarian Academy of Sciences and by Grant OTKA T 38233 and TS 40877.

References

- D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurchak (Eds.), Stud. Surf. Sci. Catal. — Methane conversion, vol. 36, Elsevier, Amsterdam, 1988.
- [2] Y. Ono, Catal. Rev. Sci. Eng. 34 (1992) 179.
- [3] J.H. Lunsford, in: L. Guczi, F. Solymosi, P. Tétényi (Eds.), Proceedings of the 10th International Congress in Catalysis, Akadémiai Kiadó, Budapest, 1993, p. 103.
- [4] L. Wang, L. Tao, M. Xie, G. Xu, J. Huang, Y. Xu, Catal. Lett. 21 (1993) 35.
- [5] Y. Xu, L. Wang, M. Xie, X. Gou, Catal. Lett. 30 (1995) 135.
- [6] F. Solymosi, A. Erdőhelyi, A. Szőke, Catal. Lett. 32 (1995) 43.
- [7] F. Solymosi, A. Szőke, J. Cserényi, Catal. Lett. 39 (1996) 157.
- [8] F. Solymosi, J. Cserényi, A. Szőke, T. Bánsági, A. Oszkó, J. Catal. 165 (1997) 150.
- [9] D.W. Wang, J.H. Lunsford, M.P. Rosynek, Top. Catal. 3 (4) (1996) 299.

- [10] J.H. Lunsford, M.P. Rosynek, D.W. Wang, Stud. Surf. Sci. Catal. 107 (1997) 257.
- [11] D.W. Wang, J.H. Lunsford, M.P. Rosynek, J. Catal. 169 (1997) 347.
- [12] F. Solymosi, A. Szőke, Appl. Catal. A166 (1998) 225.
- [13] F. Solymosi, R. Németh, Catal. Lett. 62 (1999) 197.
- [14] F. Solymosi, R. Németh, L. Óvári, L. Egri, J. Catal. 195 (2000) 316.
 [15] S. Yuan, S.B. Derouane-Abd Hamid, Y. Li, P. Ying, Q. Xin, E.G.
- Derouane, C. Li, J. Mol. Catal. A: Chem. 180 (2002) 245.
- [16] F. Solymosi, R. Németh, A. Széchenyi, Catal. Lett. 82 (2002) 213.
- [17] S. Yuan, S.B. Derouane-Abd Hamid, Y. Li, P. Ying, Q. Xin, E.G. Derouane, C. Li, J. Mol. Catal. A: Chem. 184 (2002) 257.
- [18] F. Solymosi, A. Széchenyi, J. Catal. 223 (2004) 221.
- [19] F. Solymosi, L. Bugyi, A. Oszkó, I. Horváth, J. Catal. 185 (1999) 160.
- [20] F. Solymosi, L. Bugyi, A. Oszkó, Catal. Lett. 57 (1999) 103.
- [21] L. Bugyi, A. Oszkó, F. Solymosi, Surf. Sci. 516 (2002) 74.
- [22] L. Bugyi, A. Oszkó, F. Solymosi, Surf. Sci. 519 (2002) 139.
- [23] L. Bugyi, A. Oszkó, F. Solymosi, Surf. Sci. 539 (2003) 1.
- [24] B.E. Bent, Chem. Rev. 96 (1996) 1361.
- [25] F. Zaera, Acc. Chem. Res. 25 (1992) 260.
- [26] F. Solymosi, J. Mol. Catal. A 131 (1998) 121.
- [27] F. Zaera, Catal. Lett. 91 (2003) 1.
- [28] A.J. Brungs, A.P.E. York, J.B. Claridge, C. Márquez-Alvarez, M.L.H. Green, Catal. Lett. 70 (2000) 117.
- [29] L. Leclercq, M. Provost, H. Pastor, J. Grimblot, A.M. Hardy, L. Gengembre, G. Leclercq, J. Catal. 117 (1989) 371.
- [30] A.J. Barnes, H.E. Hallam, J.D.R. Howells, G.F. Scrimshaw, J. Chem. Soc., Faraday Trans. II 69 (1973) 738.
- [31] M.A. Chesters, C. De La Cruz, P. Gardner, E.M. McCash, P. Pudney, G. Shahid, N. Sheppard, J. Chem. Soc., Faraday Trans. 86 (1990) 2757.
- [32] J. Eng Jr., B. Fruhberger, J.G. Chen, B.E. Bent, Catal. Lett. 54 (1998) 133.
- [33] L. Bugyi, A. Oszkó, F. Solymosi, Surf. Sci. 561 (2004) 57.
- [34] L. Óvári, F. Solymosi, J. Catal. A: Chem. 207 (2004) 35.